
Iterator 
 

Objective 

Provide a way to sequentially access the elements of an aggregated object, without 
exposing its underlying representation. 

Function 

According to the Gang of Four book, we can perform tours on composite objects 
regardless of their implementation. 

Structure 
As shown in figure 1 

This design pattern will be useful to access the elements of an array or collection of 
objects contained in another object. 

The structure that meets this pattern is shown in Figure 1 

 

Figure 1: UML Diagram Iterator Pattern 

Applications 
The use of the Iterator pattern is recommended when: 

• It requires handling a collection of objects and there are different ways to 
navigate through it. 
 
 

• There are different collections of objects for the same navigation logic. 
 
 

• Different filters and sorting algorithms can be applied. 



 

Design Patterns Collaborators 
• Iterator patterns are generally applied to recursive structures, so the use of the 

composite pattern is very common. 
 
 

• The factory method pattern allows you to instantiate the appropriate iterator 
for a collection. 
 
 

• The memento pattern is generally used to internally retain the status of each 
iteration. 
 

Scope of action 

Applied at the object level. 

Problem 

To handle several objects contained in a collection, it must be instantiated with its 
navigation algorithm; this implies the creation of several objects, ensuring that the 
client class knows the implementations of them, overloading the memory and 
causing a high coupling between the objects and the classes that instantiate them. 

Solution 

The Iterator design pattern implements an interface to navigate through the 
collection of objects, allowing each one to discriminate the sequence to follow; that 
is to say that it is enough to instantiate the interface and each object will implement 
it indicating the current object and the next one, according to some ordering criteria 
of the elements of the collection. 

 

 

 

 

 

 

 

 

 

 



Diagram or Implementation 

 

Figure 2: UML Diagram Iterator Pattern 

Figure 2 explains the behaviour of the pattern by means of a sequence diagram. 

• The client class prompts the ConcreteAggregate component to create an 
iterator. 
 
 

• The ConcreteAggregate component creates a new Iterator. 
 
 

• The client class, to go through the elements, enters a cycle until there are no 
more elements in the iterator, the hasNext method will tell you when the end 
has been reached. 
 
 

• The client class requests the next element from the iterator using the next 
method. 
 
 

• If there are more elements we go back to step three, this is repeated until the 
end of the tour. 

 


