
Observer 

Objective 

Define one or more dependencies between objects so that if an object changes its state, these 
dependencies are automatically reported and updated. 

Function 

Define a one-to-many dependency between objects, so that when one changes state, all the objects that 
depend on it are automatically notified and updated. 

Structure 
As shown in figure 1 

• IObservable: Interface that must implement all the objects that want to be observed, it defines the 
minimum methods that must be implemented. 
 

• ObservableConcrete: Class that wants to be observed, it implements IObservable and must 
implement its methods. 
 

• IObserver: Interfaces that must implement all the objects that want to observe the changes of 
IObservable. 
 

• ObservableConcrete: Concrete class that is attentive to the changes of IObserver, this class inherits 
from IObserver and must implement its methods. 
 

The structure that meets this pattern is shown in Figure 1 

 



Figure 1: UML Diagram Observer Pattern 

Applications 
The use of the Observer pattern is recommended when: 

• An abstraction requires two aspects, one dependent on the other; which need to be encapsulated 
in the separate objects so that they can vary and be used independently. 
 
 

• Changing one object requires changing others, and it is not known exactly how many. 
 
 

• An object must notify others without needing to know who they are specifically. 
 

Design Patterns Collaborators 
• The Mediator pattern can act as a mediator between subjects and observers, encapsulating the 

semantics of complex updating. 
 
 

• The Observer pattern can make use of the Singleton pattern to make it uniquely and globally 
accessible to the subject. 
 

Scope of action 

Applied at the object level. 

Problem 

The application requires the creation of dependencies between objects that allow to update the relations 
between them in the moment that one varies, in the conventional development this process implies 
redundant code and wide consumption of resources. 

Solution 

The Observer pattern describes how to establish these relationships; using two essential objects: 
"subject" and "observer" that perform the process known as publish-subscribe; that is, subject can handle 
any number of dependent observers, who are notified by means of a "publication" when a subject suffers 
some kind of change in his status, at that moment observer will consult him to synchronize his status with 
that of the subject. 

 

 

 

 

 

 

 

 



Diagram or Implementation 

 

Figure 2: UML Diagram Observer Pattern 

Figure 2 explains the behaviour of the pattern by means of a sequence diagram. 

• The ObserverA component is registered with the client object to be notified of any changes. 
 
 

• The ObserverB component is registered with the client object to be notified of any changes. 
 
 

• There is some change in the client's status. 
 
 

• All Observers are notified of the change. 
 


