
Bridge 

 

Objective 

Separate an abstraction from its implementation, so that both may vary 
independently. 

Function 

Decouple an abstraction from its implementation. 

Structure 

The client class does not want to deal with platform-dependent details. The Bridge 
pattern encapsulates this complexity behind a 'wrap'. of abstraction.Bridge 
emphasizes the identification and decoupling of "interface" abstraction from 
"implementation" abstraction. 

The structure that meets this pattern is shown in Figure 1 

 

Figure 1: UML Diagram Bridge Pattern 

Applications 
• You want to share an implementation among multiple objects, and that this fact 

is transparent to the client. 
 
 

• A permanent link between an abstraction and its implementation needs to be 
removed, for example, when an implementation needs to be linked or changed 
at run time. 
 
 



• The need to implement various representations of an abstraction can generate 
a proliferation of classes. 
 
 

• Abstraction and implementation must be extensible through aggregation of 
subclasses. In this case the bridge design pattern allows the combination of 
different abstractions and implementations and extend them independently. 
 
 

• Changes in the implementation of an abstraction should not impact the client 
classes, their code should not be recompiled. 
 

Design Patterns Collaborators 
• The Abstract Factory pattern can create and set a certain bridge pattern. 

 

Scope of action 

Applied at the object level. 

Problem 

To make use of different representations of an abstract class, it is required to 
implement an inheritance since an abstract class defines the interface for such 
abstraction and the concrete, or inherited, classes implement the different ways, 
however this implementation is limiting, considering that permanently linked to 
abstraction, which makes it difficult to modify, extend, and reusing abstractions and 
implementations independently. 

Solution 

The bridge design pattern allows a bridge to connect a abstraction of its different 
implementations, which creates a hierarchy for the abstractions and another for the 
implementations, allowing to manage both class hierarchies independently. 

 

 

 

 

 

 

 

 



Diagram or Implementation 

 

Figure 2: UML Diagram Bridge Pattern 

Figure 2 explains the behaviour of the bridge pattern by means of a sequence 
diagram. 

• Client class executes an AbstractionImplement operation. 
 
 

• The class AbstractionImplement replicates the request to 
ConcreteImplementor, in this step the class AbstractionImplement could 
perform a conversion of the parameters to execute the ConcreteImplementor. 
 
 

• ConcreteImplementor returns the results to the AbstractionImplement class. 
 
 

• Finally the AbstractionImplement class converts the results of the 
ConcreteImplementor to be returned to the client. 
 

 
 
 
 
 



Study Cases 

Drawing Editor System 

 

Figure 3: UML Diagram Drawing Editor System 



 

 

Figure 4: UML Diagram Drawing Editor System 

 
 
 

 

 

 

 

 

 

 

 

 

 



Tourist Reservation System 

 

Figure 5: UML Diagram Tourist Reservation System 



 

 

Figure 6: UML Diagram Tourist Reservation System 

 


