
Decorator 

Objective 

Implementing additional responsibilities to an object, so dynamic, and provide a 
flexible alternative to extend the functionality of a subclass. 

Function 

Facilitate the addition of functionality to a class dynamically. 

Structure 

The client is always interested in CentralFunctionality.doSomething(). The client 
may, or may not, be interested in OptionOne.doSomething() and 
OptionTwo.doSomething(). Each of these classes always delegates to the base class 
Decorator, and that class always delegates to the object 'wrappee' content. 

The structure that meets this pattern is shown in Figure 1 

 

Figure 1: UML Diagram Decorator Pattern 

Applications 

The use of the Decorator pattern is recommended when: 

• The system requires that responsibilities be added dynamically and 
transparently to individual objects; that is, without affecting the other objects. 
 
 

• Withdrawal of responsibility without affecting operation is required. 
 
 



• Extensibility to subclass is impractical. Sometimes a large number of 
independent extensions is possible and would result in an explosion of 
subclasses for to support each combination. 
 

Design Patterns Collaborators 
• A Decorator pattern is normally considered a single-component generated 

composite pattern; as a Decorator adds responsibilities additional. 
 
 

• The Decorator and Strategy patterns work together, in the area of variation of 
an object; one is in charge of its presentation while the other their form, 
respectively. 
 

Scope of action 

Applied at the object level. 

Problem 

To add a specific behavior or state to the individually and at run time, it is required 
to implement the inheritance; without However, this applies to an entire class in a 
static manner and the customer loses control. 

Solution 

The Decorator pattern forms the interface of the component that works as the 
boundary between a class and its respective subclasses, which is transparent to 
clients, the decorator class refers the order to the component and performs while 
transparency allows for recursively nesting decorators so that an unlimited number 
of aggregate liabilities are satisfied dynamically. 

 

 

 

 

 

 

 

 

 

 



Diagram or Implementation 

 

Figure 2: UML Diagram Decorator Pattern 

Figure 2 explains the behaviour of the Decorator pattern by means of a sequence 
diagram. 

• Client Class performs an operation on the DecoratorA component. 
 
 

• The component DecoratorA performs the same operation on component 
DecoratorB. 
 
 

• The DecoradorB component class performs an action on ConcreteComponent. 
 
 

• The component type DecoratorB executes a decoration operation. 
 
 

• The component type DecoratorA executes a decoration operation. 
 
 

• The Client class receives as a result an object decorated by all the Decorators, 
which encapsulated the Component in several layers. 
 

 
 



Study Cases 

Interface System 

 

Figure 3: UML Diagram Interface System 

 

 

Figure 4: UML Diagram Interface System 

 
 
 



Tourist Reservation System 

 

Figure 5: UML Diagram Tourist Reservation System 

 

 

Figure 6: UML Diagram Tourist Reservation System 

 


